3.62 \(\int (d+e x^n) (a+c x^{2 n})^p \, dx\)

Optimal. Leaf size=135 \[ d x \left (a+c x^{2 n}\right )^p \left (\frac {c x^{2 n}}{a}+1\right )^{-p} \, _2F_1\left (\frac {1}{2 n},-p;\frac {1}{2} \left (2+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )+\frac {e x^{n+1} \left (a+c x^{2 n}\right )^p \left (\frac {c x^{2 n}}{a}+1\right )^{-p} \, _2F_1\left (\frac {n+1}{2 n},-p;\frac {1}{2} \left (3+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )}{n+1} \]

[Out]

d*x*(a+c*x^(2*n))^p*hypergeom([-p, 1/2/n],[1+1/2/n],-c*x^(2*n)/a)/((1+c*x^(2*n)/a)^p)+e*x^(1+n)*(a+c*x^(2*n))^
p*hypergeom([-p, 1/2*(1+n)/n],[3/2+1/2/n],-c*x^(2*n)/a)/(1+n)/((1+c*x^(2*n)/a)^p)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 135, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {1433, 246, 245, 365, 364} \[ d x \left (a+c x^{2 n}\right )^p \left (\frac {c x^{2 n}}{a}+1\right )^{-p} \, _2F_1\left (\frac {1}{2 n},-p;\frac {1}{2} \left (2+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )+\frac {e x^{n+1} \left (a+c x^{2 n}\right )^p \left (\frac {c x^{2 n}}{a}+1\right )^{-p} \, _2F_1\left (\frac {n+1}{2 n},-p;\frac {1}{2} \left (3+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )}{n+1} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^n)*(a + c*x^(2*n))^p,x]

[Out]

(d*x*(a + c*x^(2*n))^p*Hypergeometric2F1[1/(2*n), -p, (2 + n^(-1))/2, -((c*x^(2*n))/a)])/(1 + (c*x^(2*n))/a)^p
 + (e*x^(1 + n)*(a + c*x^(2*n))^p*Hypergeometric2F1[(1 + n)/(2*n), -p, (3 + n^(-1))/2, -((c*x^(2*n))/a)])/((1
+ n)*(1 + (c*x^(2*n))/a)^p)

Rule 245

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*x*Hypergeometric2F1[-p, 1/n, 1/n + 1, -((b*x^n)/a)],
x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILtQ[Simplify[1/n + p], 0] && (IntegerQ[p
] || GtQ[a, 0])

Rule 246

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])/(1 + (b*x^n)/a)^Fr
acPart[p], Int[(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILt
Q[Simplify[1/n + p], 0] &&  !(IntegerQ[p] || GtQ[a, 0])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 1433

Int[((d_) + (e_.)*(x_)^(n_))*((a_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(d + e*x^n)*(a +
 c*x^(2*n))^p, x], x] /; FreeQ[{a, c, d, e, n}, x] && EqQ[n2, 2*n]

Rubi steps

\begin {align*} \int \left (d+e x^n\right ) \left (a+c x^{2 n}\right )^p \, dx &=\int \left (d \left (a+c x^{2 n}\right )^p+e x^n \left (a+c x^{2 n}\right )^p\right ) \, dx\\ &=d \int \left (a+c x^{2 n}\right )^p \, dx+e \int x^n \left (a+c x^{2 n}\right )^p \, dx\\ &=\left (d \left (a+c x^{2 n}\right )^p \left (1+\frac {c x^{2 n}}{a}\right )^{-p}\right ) \int \left (1+\frac {c x^{2 n}}{a}\right )^p \, dx+\left (e \left (a+c x^{2 n}\right )^p \left (1+\frac {c x^{2 n}}{a}\right )^{-p}\right ) \int x^n \left (1+\frac {c x^{2 n}}{a}\right )^p \, dx\\ &=d x \left (a+c x^{2 n}\right )^p \left (1+\frac {c x^{2 n}}{a}\right )^{-p} \, _2F_1\left (\frac {1}{2 n},-p;\frac {1}{2} \left (2+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )+\frac {e x^{1+n} \left (a+c x^{2 n}\right )^p \left (1+\frac {c x^{2 n}}{a}\right )^{-p} \, _2F_1\left (\frac {1+n}{2 n},-p;\frac {1}{2} \left (3+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )}{1+n}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 110, normalized size = 0.81 \[ \frac {x \left (a+c x^{2 n}\right )^p \left (\frac {c x^{2 n}}{a}+1\right )^{-p} \left (d (n+1) \, _2F_1\left (\frac {1}{2 n},-p;\frac {1}{2} \left (2+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )+e x^n \, _2F_1\left (\frac {n+1}{2 n},-p;\frac {1}{2} \left (3+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )\right )}{n+1} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^n)*(a + c*x^(2*n))^p,x]

[Out]

(x*(a + c*x^(2*n))^p*(d*(1 + n)*Hypergeometric2F1[1/(2*n), -p, (2 + n^(-1))/2, -((c*x^(2*n))/a)] + e*x^n*Hyper
geometric2F1[(1 + n)/(2*n), -p, (3 + n^(-1))/2, -((c*x^(2*n))/a)]))/((1 + n)*(1 + (c*x^(2*n))/a)^p)

________________________________________________________________________________________

fricas [F]  time = 1.19, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (e x^{n} + d\right )} {\left (c x^{2 \, n} + a\right )}^{p}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x^n)*(a+c*x^(2*n))^p,x, algorithm="fricas")

[Out]

integral((e*x^n + d)*(c*x^(2*n) + a)^p, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (e x^{n} + d\right )} {\left (c x^{2 \, n} + a\right )}^{p}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x^n)*(a+c*x^(2*n))^p,x, algorithm="giac")

[Out]

integrate((e*x^n + d)*(c*x^(2*n) + a)^p, x)

________________________________________________________________________________________

maple [F]  time = 0.11, size = 0, normalized size = 0.00 \[ \int \left (e \,x^{n}+d \right ) \left (c \,x^{2 n}+a \right )^{p}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^n+d)*(c*x^(2*n)+a)^p,x)

[Out]

int((e*x^n+d)*(c*x^(2*n)+a)^p,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (e x^{n} + d\right )} {\left (c x^{2 \, n} + a\right )}^{p}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x^n)*(a+c*x^(2*n))^p,x, algorithm="maxima")

[Out]

integrate((e*x^n + d)*(c*x^(2*n) + a)^p, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (a+c\,x^{2\,n}\right )}^p\,\left (d+e\,x^n\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + c*x^(2*n))^p*(d + e*x^n),x)

[Out]

int((a + c*x^(2*n))^p*(d + e*x^n), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x**n)*(a+c*x**(2*n))**p,x)

[Out]

Timed out

________________________________________________________________________________________